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⚫ For the first time, we explored the driven dynamics in Gross-Neven-Yukawa universality class.

⚫ We have verified that the driven dynamics satisfies the finite-time scaling.
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Motivation

• Driven dynamics: changing the distance to the critical point linearly

--Scaling theory in usual Landau-Ginzburg-Wilson universality class:

(1) Kibble-Zurek mechanism (generation and scaling of topological defects after driving)[1,2]

(2) Finite-time scaling (full scaling form in the driving process)[3]

• Dirac systems: Graphene, Weyl/Dirac semimetal, surface of topological insulator

--Gross-Neveu-Yukawa universality class[4,5]

• Question: How do Dirac fermions affect the dynamic scaling behavior?

Determinant quantum Monte Carlo

• We employ the determinant quantum Monte Carlo(DQMC) method.

• Trotter decomposition

𝑒𝜏𝐻 = 𝑒Δ𝜏𝐻𝑡𝑒Δ𝜏𝐻𝑈
𝑀

𝑀 = 𝜏/Δ𝜏 (𝑀 is integer)

𝐻𝑡: the hopping term in the Hamiltonian

𝐻𝑈:the Hubbard interaction in the Hamiltonian

Δ𝜏/𝑡 = 0.05
• Discrete Hubbard-Stratonovich transformation
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Here, we introduce a four-component space-time local auxiliary fields 𝛾 ±1 = 1 + 6/3, 𝛾 ±2 =

1 − 6/3 , 𝜂 ±1 = ± 2(3 − 6) , 𝜂 ±2 = ± 2(3 + 6) , and use DQMC for importance

sampling over these space-time configurations.

Observables:

• Antiferromagnetic structure factor:
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• Staggered magnetization:

𝑚𝑖
(𝑧)

= Ԧ𝑐𝑖,𝐴
† 𝜎𝑧 Ԧ𝑐𝑖,𝐴 − Ԧ𝑐𝑖,𝐵

† 𝜎𝑧 Ԧ𝑐𝑖,𝐵
𝑖: the index of unit cell

A,B: different sublattices

• The square of AFM order parameter:

𝑚2 = 𝑆(𝟎)
• Correlation ratio:

𝑅𝑠 = 1 −
𝑆 0 + 𝒂

2𝜋
𝐿

𝑆 0
, 𝒂 ≡ 𝒙 + 𝒚/ 3

Hamiltonian:

• Half-filled 2D spin-1/2 Hubbard model on the honeycomb lattice

𝐻 = −𝑡 ෍

𝑖𝑗 ,𝜎

𝑐𝑖𝜎
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1
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)

𝑡: hopping term coefficient
𝑈: interacting term coefficient
⟨𝑖𝑗⟩ : nearest neighbor sites 𝑖 and 𝑗

𝑐𝑖𝜎
† (𝑐𝑗𝜎): the creation(annihilation) operator of electron at spin 𝜎(=↑, ↓)

𝑛𝑖𝜎: the number operator of electron defined as 𝑐𝑖𝜎
† 𝑐𝑖𝜎
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Model and Method

Phase diagram:

Results: Chiral Heisenberg[5]

Ordered initial state

Semimetal initial state

Results: Chiral Ising[6]

Ordered initial state

Semimetal initial state

Summary
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